

rfgb

Overview:

	Getting Started
	Development Environment Setup

	Getting Started

	Running rfgb

	Development
	Contributing

	Unit Tests

Commandline Utilities

	Commandline
	Workflow

	Data

API:

	rfgb Submodules
	rfgb.boosting module

	rfgb.logic module

	rfgb.tree module

	rfgb.utils module

	rfgb.rdn package
	rfgb.rdn.learn module

	rfgb.rdn.infer module

Indices and tables

	Index

	Module Index

Getting Started

Installation and a few motivating examples.

	Development Environment Setup

	Getting Started

	Running rfgb

Development Environment Setup

The first step is to get Python running on your machine (skip to the next step if you’ve already done this).

Linux (yum/dnf)

$ sudo yum update
$ sudo yum install python

Linux (apt-get)

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install python

Windows

Download Python from python.org [https://www.python.org] or anaconda.com [https://www.anaconda.com/download/].

A fairly in-depth guide is available as part of the Conda documentation [https://conda.io/docs/user-guide/install/windows.html].

Getting Started

Installation

rfgb can be installed via the following methods:

	Stable builds on PyPi [https://pypi.org/project/rfgb/]

pip install rfgb

	Development builds on GitHub [https://github.com/hayesall/rfgb]

pip install git+git://github.com/hayesall/rfgb.git

	Bleeding-edge development builds on the GitHub Development Branch [https://github.com/hayesall/rfgb/tree/development]

pip install git+git://github.com/hayesall/rfgb.git@development

Background

The main function of rfgb is to learn relational dependency networks 1 via gradient tree boosting, based on Natarajan et al. “Boosting Relational Dependency Networks” 2.

[image: ../_images/rfgb.svg]This algorithm is implemented as the __main__ method for the rfgb package.

rfgb.__main__

from .boosting import updateGradients
from .tree import node
from .utils import Utils

... class Arguments:

parameters = Arguments().args

for target in parameters.target:

 # Read the training data
 trainData = Utils.readTrainingData(target,
 path=parameters.train,
 regression=parameters.reg,
 advice=parameters.expAdvice)

 # Initialize an empty list for the trees.
 trees = []

 # Learn each tree and update the gradients.
 for i in range(parameters.trees):

 node.setMaxDepth(2)
 node.learnTree(trainData)
 trees.append(node.learnedDecisionTree)
 updateGradients(trainData, trees)

File Structure

File structure follows the structure used by BoostSRL.

Training directories and testing directories are currently used and flat files are read from, converted to a relational internal representation, and then the relationships may be reasoned about.

References

	1

	Jennifer Neville and David Jensen, “Relational Dependency Networks.” Journal of Machine Learning Research (JMLR), 2007.

	2

	Siraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude Shavlik, “Boosting Relational Dependency Networks. *International Conference on Inductive Logic Programming (ILP)*, 2010. [https://starling.utdallas.edu/assets/pdfs/boosting10ilp.pdf]

Running rfgb

Reasoning about the World

Object and their relationships are a natural way to think about the world. In this example, we have some facts about the world which we want to learn from. More specifically, we have a table of people and their relationships.

	Name

	Gender

	Child

	Sibling

	James

	Male

	[Harry]

	
	

	Lily

	Female

	[Harry]

	Petunia

	Harry

	Male

	
	

	
	

	Arthur

	Male

	[Ron, Fred]

	
	

	Molly

	Female

	[Ron, Fred]

	
	

	Ron

	Male

	
	

	[Fred]

	Fred

	Male

	
	

	[Ron]

Assume that the goal is to learn father(Y,X). We want to learn logical rules representing that domain object X is the father of Y (both of which are people in this case), given that you know information about their gender, children, and siblings.

From Tables to First-order Predicate Logic

Once we have a high-level idea of what these relationships look like, the next step is to convert this into predicate logic format. This format is standard for most Prolog-based systems.

A few assumptions we will make about our data:

	‘Name’ is an identifier.

	‘Gender’ is male or female in this case, so we can make it a true/false value.

	‘Child’ and ‘Sibling’ are binary relationships encoding a relationship between two people (e.g. childof(lily, harry) denotes that ‘harry’ is the childof ‘lily’).

The target we want to learn is father(x,y). To learn this rule, rfgb learns a decision tree that most effectively splits the positive and negative examples. This example is fairly small so a small number of trees should suffice, but for more complicated problem more may be needed to learn a robust model.

Positive Examples:

father(harrypotter,jamespotter).
father(ginnyweasley,arthurweasley).
father(ronweasley,arthurweasley).
father(fredweasley,arthurweasley).
...

Negative Examples:

father(harrypotter,mollyweasley).
father(georgeweasley,jamespotter).
father(harrypotter,arthurweasley).
father(harrypotter,lilypotter).
father(ginnyweasley,harrypotter).
father(mollyweasley,arthurweasley).
father(fredweasley,georgeweasley).
father(georgeweasley,fredweasley).
father(harrypotter,ronweasley).
father(georgeweasley,harrypotter).
father(mollyweasley,lilypotter).
...

Facts:

male(jamespotter).
male(harrypotter).
male(arthurweasley).
male(ronweasley).
male(fredweasley).
male(georgeweasley).
siblingof(ronweasley,fredweasley).
siblingof(ronweasley,georgeweasley).
siblingof(ronweasley,ginnyweasley).
siblingof(fredweasley,ronweasley).
siblingof(fredweasley,georgeweasley).
siblingof(fredweasley,ginnyweasley).
siblingof(georgeweasley,ronweasley).
siblingof(georgeweasley,fredweasley).
siblingof(georgeweasley,ginnyweasley).
siblingof(ginnyweasley,ronweasley).
siblingof(ginnyweasley,fredweasley).
siblingof(ginnyweasley,georgeweasley).
childof(jamespotter,harrypotter).
childof(lilypotter,harrypotter).
childof(arthurweasley,ronweasley).
childof(mollyweasley,ronweasley).
childof(arthurweasley,fredweasley).
childof(mollyweasley,fredweasley).
childof(arthurweasley,georgeweasley).
childof(mollyweasley,georgeweasley).
childof(arthurweasley,ginnyweasley).
childof(mollyweasley,ginnyweasley).
...

Training a Model

There is one more piece we still need: background knowledge about the world.

// Parameters
setParam: maxTreeDepth=3.
setParam: nodeSize=1.
setParam: numOfClauses=8.

// Modes
mode: male(+name).
mode: childof(+name,+name).
mode: siblingof(+name,-name).
mode: father(+name,+name).

Begin training:

python -m rfgb --help

Development

Comments on developing rfgb further.

	Contributing

	Unit Tests

Contributing

From the BoostSRL Contributing Guidelines:

“Our goal is to push the boundaries of machine learning and statistical relational learning through open development and explainable approaches to decision making in both learning and inference. We believe that these are some of the best ways to create trustworthy systems that people can learn from and interract with in their daily lives.”

The goal in this project is to match and eventually extend beyond BoostSRL [https://github.com/starling-lab/BoostSRL] (the Java version of the codebase), contributions which further this are welcome.

Code of Conduct

We adopt the Contributor Covenant Code of Conduct [https://www.contributor-covenant.org/]

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at alexander.hayes@utdallas.edu. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate for the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of the incident.

Development Cheat-Sheet

	Fork and clone the source from GitHub

git clone https://github.com/hayesall/rfgb.git

	Building local copy of documentation

We use Sphinx autodoc with a combination of inline docstrings and reStructuredText for documenting this project. Pull requests and further updates should include appropriate documentation.

A local copy of the documentation may be built from the Makefile:

cd docs
make html
xdg-open build/html/index.html

	Running the unit tests

rfgb/tests/ contains a suite of unit tests, these can be ran via the following:

python rfgb/tests/tests.py

Note

As of 0.2.0, these should be ran from the base of the repository due to their import structure.

Unit Tests

The main testing module for rfgb must be ran from the base of the project repository.

For example:

python rfgb/tests/tests.py

Verbosity may be explicitly set by passing an integer with the -v flag. The value will be passed into unittest.TextTestRunner, so integers higher than 1 will lead to more verbose outputs.

python rfgb/tests/tests.py -v 2

Testing Individual Modules

Individual modules may be tested with unittest via the command line.

python -m unittest rfgb/tests/rfgbtests/test_Utils.py
.......
--
Ran 7 tests in 0.005s

OK

Commandline

	Workflow

	Data

Workflow

CLI interface for performing learning and inference with different types of statistical relational learning methods, and managing these learned models for particular data sets.

Some of the ideas built here are shamelessly inspired by Git, so the workflows for using the commandline interface to rfgb should hopefully feel somewhat familiar to those familiar with version control.

$ pip install rfgb
$ rfgb --help
usage: rfgb [-h] [-V] {init,learn,infer} ...

rfgb: Relational Functional Gradient Boosting is a gradient-boosting
approach to learning statistical relational models.

optional arguments:
 -h, --help show this help message and exit
 -V, --version show version number and exit

rfgb Subcommands:
 Commands and subcommands for rfgb.

 {init,learn,infer} $ rfgb --help
 init Initialize a .rfgb directory.
 learn Learn various SRL models.
 infer Infer with various SRL models.

Assuming you start with a training and test set (we’ll talk about those later), you can initialize a place where your models and meta-data will be stored.

$ rfgb init

This creates a .rfgb directory containing a models directory.

Data

As data scientists, a great deal of time is often spent getting data into a particular format. It is overly-ambitious to claim that we have solved this problem, but we try to reduce the time spent cleaning data.

The format we use is similar to Prolog, but with a clear distinction between data and programs.

Machine Learning is often described as learning a function over a vector \(x\) such that we can learn a target value \(y\).

\[f(x) = P(y | x)\]

Defining Terms

The terms we invoke to describe these functions are Positives, Negatives, Facts, and Background Knowledge.

	Positive examples are true (or correct) examples that we want to learn from.

	Negative examples are false (or incorrect), examples that we do not want to do.

	Facts are features we use to learn. We make the assumption that some combination of the facts can be used to distinguish between positives and negatives.

	Background Knowledge comes in many forms, but is a way to introduce more information to learn more effectively. If a classifier is learning to distinguish handwritten digits, extra negative examples might be created by rotating digits. Background Knowledge about this domain might involve not rotating “6” and “9”, since they are identical when rotated.

Background Knowledge is often described as the “black magic” or “expert knowledge” in machine learning. Many of our methods are designed to effectively incorporate this kind of knowledge, and solicit it in a variety of ways.

Format

Positives, negatives, and facts are contained in pos.txt, neg.txt, and facts.txt. Some examples are contained in the testDomains directory at the base of this repository.

For example: testDomains/HeartAttack/train/:

	pos.txt

	neg.txt

	facts.txt

	ha(p1)
ha(p6)

	ha(p2)
ha(p3)
ha(p4)
ha(p5)
ha(p7)
ha(p8)
ha(p9)
ha(p10)

	chol(p1,high)
race(p1,r1)
chol(p2,medium)
race(p2,r1)
chol(p3,medium)
race(p3,r1)
chol(p4,medium)
race(p4,r1)
chol(p5,low)
race(p5,r1)
chol(p6,high)
race(p6,r2)
chol(p7,medium)
race(p7,r2)
chol(p8,medium)
race(p8,r2)
chol(p9,medium)
race(p9,r2)
chol(p10,low)
race(p10,r2)

ha(person)
chol(+person,[low;medium;high])
race(+person,[r1;r2])

Positve

The latter are inspired by the FOIL method and paper.

rfgb Submodules

Submodules found in rfgb.

	rfgb.boosting module

	rfgb.logic module

	rfgb.tree module

	rfgb.utils module

rfgb.boosting module

Core methods for performing learning and inference, such as computing
gradients, updating gradients, and performing inference.

Documentation

	
rfgb.boosting.computeAdviceGradient(example)

	Proves each clause (Prover.prove()) and computes the advice gradient
as NumberTrue - NumberFalse.

	Parameters

	example –

	
rfgb.boosting.computeSumOfGradients(example, trees, data)

	Computes new gradients for an example.

	Parameters

	
	example –

	trees –

	data –

	
rfgb.boosting.inferTreeValue(clauses, query, data)

	Returns the probability of query given data and the clauses learned.

	Parameters

	
	clauses –

	query –

	data –

	
rfgb.boosting.performInference(testData, trees)

	Computes the probabilities for test examples.

	Parameters

	
	testData (utils.Data object.) – Data for testing.

	trees (list.) – List of strings representing learned decision trees.

Example:

from rfgb.boosting import performInference

	
rfgb.boosting.updateGradients(data, trees, loss='LS', delta=None)

	Update gradients of the data.

	Parameters

	
	data (utils.Data object.) – Training or testing data (with parameters).

	trees (list.) – List of strings representing trees.

	loss (str.) – Loss function for regression (currently implemented:
‘LS’, ‘LAD’, ‘Huber’).

	delta (float) – Delta value for Huber loss.

Example:

from rfgb.boosting import updateGradients

rfgb.logic module

(docstring)

	
class rfgb.logic.Goal(rule, parent=None, env={})

	Bases: object

class for each goal in rule during prolog search

	
class rfgb.logic.Logic

	Bases: object

Class for logic operations.

	
static constantsPresentInLiteral(literalTypeSpecification)

	Returns true if constants present in type specification.

	
static generateTests(literalName, literalTypeSpecification, clause)

	Generates tests for literal according to modes and types.

	
static getVariables(literal)

	Returns variables in the literal.

	
class rfgb.logic.Prover

	Bases: object

class for prolog style proof of query

	
goalId = 100

	

	
static prove(data, example, clause)

	Proves if example satisfies clause given the data.
Returns True if it satisfies, else return False.

Prover.rules: contains all of the rules.
Prover.trace: If this is 1, displays the proof tree.
Prover.goalID: stores the goal ID.

	
rules = []

	

	
static search(term)

	Method to perform prolog style query search.

	
trace = 0

	

	
static unify(srcTerm, srcEnv, destTerm, destEnv)

	Unification method.

	
class rfgb.logic.Rule(s)

	Bases: object

Class for logic rules in prolog proof.

	
class rfgb.logic.Term(s)

	Bases: object

Class for term in prolog proof.

rfgb.tree module

Data structures and methods for learning decision trees.

	
class rfgb.tree.node(test=None, examples=None, information=None, level=None, parent=None, pos=None)

	Bases: object

A node in a tree.

	Parameters

	
	expandQueue – Breadth first search node expansion strategy

	depth – initial depth is 0 because no node present

	maxDepth – max depth set to 1 because we want to at least learn a tree of depth 1

	learnedDecisionTree – this will hold all the clauses learned

	data – stores all the facts, positive and negative examples

	
data = None

	

	
depth = 0

	

	
expandOnBestTest(data=None)

	Expand the node based on the best test.

	
expandQueue = []

	

	
getTrueExamples(clause, test, data)

	Returns all examples that satisfy the clause
with conjoined test literal.

	
static initTree(trainingData)

	Create the root node of the tree.

	
static learnTree(data)

	Method to create and learn the decision tree.

	
learnedDecisionTree = []

	

	
maxDepth = 1

	

	
static setMaxDepth(depth)

	Set the maximum depth of the tree.

rfgb.utils module

(docstring for utils)

	
class rfgb.utils.Data(regression=False, advice=False, softm=False, alpha=0.0, beta=0.0)

	Bases: object

Object containing the relational data.

	
getExampleTrueValue(example)

	Returns true regression value of an example for regression learning.

	
getFacts()

	returns the facts in the data

	
getLiterals()

	gets all the literals in the facts

	
getTarget()

	Returns the target.

	
getValue(example)

	Returns the regression value for an example.

Example:

from rfgb.utils import Utils
from rfgb.utils import Data

trainingData = Utils.readTrainingData('cancer',
 path='testDomain/ToyCancer/train/')

x = trainingData.getValue('cancer(earl)')
x == -0.5, since earl doesn't have cancer.

y = trainingData.getValue('cancer(alice)')
y == 0.5, since alice does have cancer

	
setBackground(bk)

	Obtains the literals and their type specifications. Types can be
either variable or a list of constants.

	
setExamples(examples, target)

	Set examples for regression.

	
setFacts(facts)

	Mutate the facts in the data object.

	Parameters

	facts (list.) – List of strings representing the facts.

	Returns

	None

	
setNeg(neg, target)

	Set negative examples based on the contents of a list.

	
setPos(pos, target)

	Set positive examples based on the contents of a list.

	
setTarget(bk, target)

	Sets self.target as a target string.
Sets self.variableType

	Parameters

	
	bk (list.) – List of strings representing modes.

	target (str.) – Target relation or attribute.

	Returns

	None

Example:

from rfgb.utils import Data

data = Data(regression=False)
background = ['friends(+person,-person)',
 'friends(-person,+person)',
 'smokes(+person)',
 'cancer(-person)']
target = 'cancer'

data.setTarget(background, target)

print(data.target)
'cancer(C)'

	
variance(examples)

	Calculates the variance of the regression values from a subset of the
data.

	
class rfgb.utils.Utils

	Bases: object

Class of utilities used by rfgb, such as reading files, removing mode
symbols, calculating Cartesian Products, etc.

	
UniqueVariableCollection = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'}

	

	
static addVariableTypes(literal)

	As literals are encountered, update Utils.data.variableType with the
type of the variables encountered.

	Parameters

	literal (str.) – A literal of the form smokes(W) or friends(A,B)

	
static cartesianProduct(itemSets)

	Returns the Cartesian Product of all sets contained in the item sets.

	
data = None

	

	
static getleafValue(examples)

	returns average of regression values for examples

	
static load(location)

	Loads json version of learnedDecisionTree from location.

	Parameters

	location (str.) – Name of the file to load.

	Returns

	None.

	
static readTestData(target, path='test/', regression=False)

	Reads the testing data from files.

	Parameters

	
	target (str.) – The target predicate.

	path (str.) – Path to the training data.

	regression (bool) – Read from examples.txt instead of pos.txt
and neg.txt.

	Default path

	‘train/’

	Default regression

	False

	Returns

	A Data object representing the training data.

	Return type

	utils.Data

	
static readTrainingData(target, path='train/', regression=False, advice=False, softm=False, alpha=0.0, beta=0.0)

	Reads the training data from files.

	Parameters

	
	target (str.) – The target predicate.

	path (str.) – Path to the training data.

	regression (bool) – Read from examples.txt instead of pos.txt
and neg.txt.

	advice (bool) – Read advice from an advice file, which should be
contained in the same directory as the examples.

	Default path

	‘train/’

	Default regression

	False

	Default advice

	False

	Returns

	A Data object representing the training data.

	Return type

	utils.Data

	
static removeModeSymbols(inputString)

	Returns a string with the mode symbols (+,-,#) removed.

Example:

from rfgb.utils import Utils

removeModeSymbols('#city')
== 'city'

i = ['+drinks', '-drink', '-city']
o = list(map(removeModeSymbols, i))
o == ['drinks', 'drink', 'city']

	
static save(location, saveItem)

	Dumps json version of learnedDecisionTree to location.

	Parameters

	location (str.) – Name of the file to write.

	Returns

	None.

	
static sigmoid(x)

	
	Parameters

	x (int or float) – Number to apply sigmoid to.

	Returns

	exp(x)/float(1+exp(x))

	Return type

	float

rfgb.rdn package

New in version 0.3.0.

Learn and infer with relational dependency networks.

Example script for performing learning and inference.

from rfgb import rdn

rdn.learn requires a list of targets as strings.
trees = rdn.learn(['cancer'], path='testDomains/ToyCancer/train/')

rdn.learn returns a dictionary mapping targets to trees.
cancer_trees = trees['cancer']

rdn.infer classification returns a tuple of pos and neg.
results = rdn.infer('cancer', cancer_trees, path='testDomains/ToyCancer/test/')

({'cancer(xena)': 0.34460796550872186,
'cancer(yoda)': 0.34460796550872186,
'cancer(zod)': 0.34460796550872186},
{'cancer(watson)': 0.34460796550872186,
'cancer(voldemort)': 0.34460796550872186})

rfgb.rdn.learn module

	
rfgb.rdn.learn.learn(targets, numTrees=10, path='', regression=False, advice=False, softm=False, alpha=0.0, beta=0.0, saveJson=True)

	
New in version 0.3.0.

Learn a relational dependency network from facts and positive/negative
examples via relational regression trees.

Note

This currently requires that training data is stored as files
on disk.

	Parameters

	
	targets (list of str.) – List of target predicates to learn models for.

	numTrees (int.) – Number of trees to learn.

	path (str.) – Path to the location training data is stored.

	regression (bool.) – Learn a regression model instead of classification.

	advice (bool.) – Read an advice file from the same directory as trainPath.

	Default regression

	False

	Default advice

	False

	Returns

	Dictionary where the key is the target and the value is the
set of trees returned for that target.

	Return type

	dict.

rfgb.rdn.infer module

	
rfgb.rdn.infer.infer(target, trees, path='', regression=False)

	
New in version 0.3.0.

Perform inference on data with a set of trees.

Note

This currently requires that test data is stored as files
on disk.

	Parameters

	
	trees (list of str.) – Trees to perform inference with.

	path (str.) – Path to the location test data is stored.

	regression (bool.) – Infer with a regression model instead of classification.

	Default regression

	False

	Returns

	Tuple of results. In classification these results will be a tuple
of positive and negative examples. In regression this will be
the examples.

	Return type

	tuple

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rfgb	

 	
 	
 rfgb.boosting	

 	
 	
 rfgb.logic	

 	
 	
 rfgb.rdn	

 	
 	
 rfgb.rdn.infer	

 	
 	
 rfgb.rdn.learn	

 	
 	
 rfgb.tree	

 	
 	
 rfgb.utils	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	addVariableTypes() (rfgb.utils.Utils static method)

C

 	
 	cartesianProduct() (rfgb.utils.Utils static method)

 	computeAdviceGradient() (in module rfgb.boosting)

 	
 	computeSumOfGradients() (in module rfgb.boosting)

 	constantsPresentInLiteral() (rfgb.logic.Logic static method)

D

 	
 	Data (class in rfgb.utils)

 	data (rfgb.tree.node attribute)

 	(rfgb.utils.Utils attribute)

 	
 	depth (rfgb.tree.node attribute)

E

 	
 	expandOnBestTest() (rfgb.tree.node method)

 	
 	expandQueue (rfgb.tree.node attribute)

G

 	
 	generateTests() (rfgb.logic.Logic static method)

 	getExampleTrueValue() (rfgb.utils.Data method)

 	getFacts() (rfgb.utils.Data method)

 	getleafValue() (rfgb.utils.Utils static method)

 	getLiterals() (rfgb.utils.Data method)

 	
 	getTarget() (rfgb.utils.Data method)

 	getTrueExamples() (rfgb.tree.node method)

 	getValue() (rfgb.utils.Data method)

 	getVariables() (rfgb.logic.Logic static method)

 	Goal (class in rfgb.logic)

 	goalId (rfgb.logic.Prover attribute)

I

 	
 	infer() (in module rfgb.rdn.infer)

 	
 	inferTreeValue() (in module rfgb.boosting)

 	initTree() (rfgb.tree.node static method)

L

 	
 	learn() (in module rfgb.rdn.learn)

 	learnedDecisionTree (rfgb.tree.node attribute)

 	
 	learnTree() (rfgb.tree.node static method)

 	load() (rfgb.utils.Utils static method)

 	Logic (class in rfgb.logic)

M

 	
 	maxDepth (rfgb.tree.node attribute)

N

 	
 	node (class in rfgb.tree)

P

 	
 	performInference() (in module rfgb.boosting)

 	
 	prove() (rfgb.logic.Prover static method)

 	Prover (class in rfgb.logic)

R

 	
 	readTestData() (rfgb.utils.Utils static method)

 	readTrainingData() (rfgb.utils.Utils static method)

 	removeModeSymbols() (rfgb.utils.Utils static method)

 	rfgb.boosting (module)

 	rfgb.logic (module)

 	rfgb.rdn (module)

 	
 	rfgb.rdn.infer (module)

 	rfgb.rdn.learn (module)

 	rfgb.tree (module)

 	rfgb.utils (module)

 	Rule (class in rfgb.logic)

 	rules (rfgb.logic.Prover attribute)

S

 	
 	save() (rfgb.utils.Utils static method)

 	search() (rfgb.logic.Prover static method)

 	setBackground() (rfgb.utils.Data method)

 	setExamples() (rfgb.utils.Data method)

 	setFacts() (rfgb.utils.Data method)

 	
 	setMaxDepth() (rfgb.tree.node static method)

 	setNeg() (rfgb.utils.Data method)

 	setPos() (rfgb.utils.Data method)

 	setTarget() (rfgb.utils.Data method)

 	sigmoid() (rfgb.utils.Utils static method)

T

 	
 	Term (class in rfgb.logic)

 	
 	trace (rfgb.logic.Prover attribute)

U

 	
 	unify() (rfgb.logic.Prover static method)

 	UniqueVariableCollection (rfgb.utils.Utils attribute)

 	
 	updateGradients() (in module rfgb.boosting)

 	Utils (class in rfgb.utils)

V

 	
 	variance() (rfgb.utils.Data method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 rfgb

 		
 Getting Started

 		
 Development Environment Setup

 		
 Linux (yum/dnf)

 		
 Linux (apt-get)

 		
 Windows

 		
 Getting Started

 		
 Installation

 		
 Background

 		
 File Structure

 		
 References

 		
 Running rfgb

 		
 Reasoning about the World

 		
 From Tables to First-order Predicate Logic

 		
 Training a Model

 		
 Development

 		
 Contributing

 		
 Code of Conduct

 		
 Development Cheat-Sheet

 		
 Unit Tests

 		
 Testing Individual Modules

 		
 Commandline

 		
 Workflow

 		
 Data

 		
 Defining Terms

 		
 Format

 		
 rfgb Submodules

 		
 rfgb.boosting module

 		
 Documentation

 		
 rfgb.logic module

 		
 rfgb.tree module

 		
 rfgb.utils module

 		
 rfgb.rdn package

 		
 rfgb.rdn.learn module

 		
 rfgb.rdn.infer module

_static/up-pressed.png

_static/up.png

